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Aim of the Talk

Direct Numerical Simulation (DNS) study of 3D Single fluid
MagnetoHydroDynamic equations have been carried out to explore
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Motivation
of the Talk

Direct Numerical Simulation (DNS) study of 3D Single fluid
MagnetoHydroDynamic equations have been carried out to explore

Nonlinear Coherent Oscillation - a energy oscillation between
kinetic and magnetic modes. RM, R Ganesh, Abhijit Sen; arXiv:1811.00744

A “Recurrence Phenomena” - a periodic reconstruction of initial
flow of fluid & magnetic variables. rw, R Ganesh, Abhijit Sen; arxiv:1811.00754

“Dynamo Effect” - Mean and intermediate scale magnetic
field generation from driven chaotic flows. [Ongoing]
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of the Talk
Direct Numerical Simulation (DNS) study of 3D Single fluid
MagnetoHydroDynamic equations have been carried out to explore

Nonlinear Coherent Oscillation - a energy oscillation between
kinetic and magnetic modes. RM, R Ganesh, Abhijit Sen; arXiv:1811.00744

“Recurrence Phenomena” - a periodic reconstruction of initial
flow of fluid & magnetic variables. Rrw, R Ganesh, Abhijit Sen; arxiv:1811.00754

“Dynamo Effect” - Mean and intermediate scale magnetic
field generation from driven chaotic flows. [Ongoing]

Finite mode / Galerkin representation confirms nonlinear
interaction of few modes.

Rayleigh Quotient determines criteria of recurrence. [Key
Parameter: Initial Condition]

Parameter set for fast dynamo is explored [Key Parameters:
Forcing amplitude (fy) & Driving scale (kf)]
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Governing Equations in

Single Fluid 3D-MHD equations evaluated by G-MHD3D
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Scope of the code

m Evaluates single fluid 3-D MagnetoHydroDynamic equations.
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Scope of the code

m Evaluates single fluid 3-D MagnetoHydroDynamic equations.

m Pseudo-spectral technique is more accurate and faster than
standard finite difference methods. [FFTW & cuFFT library]
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Scope of the code

m Evaluates single fluid 3-D MagnetoHydroDynamic equations.

m Pseudo-spectral technique is more accurate and faster than
standard finite difference methods. [FFTW & cuFFT library]

m Can handle effects arising due to weak compressibility.
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8 oe
Scope of the code

m Evaluates single fluid 3-D MagnetoHydroDynamic equations.

m Pseudo-spectral technique is more accurate and faster than
standard finite difference methods. [FFTW & cuFFT library]

m Can handle effects arising due to weak compressibility.

m 3D Isosurface reconstruction is developed using Mayavi.

m Diagnostics viz. Energy spectra, Particle & Field Line tracer
(Cloud-In-Cell & Velocity Verlet scheme), Poincare Section
are developed. [In collaboration with Vinod Saini, IPR)]
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8 oe
Scope of the code

m Evaluates single fluid 3-D MagnetoHydroDynamic equations.

m Pseudo-spectral technique is more accurate and faster than
standard finite difference methods. [FFTW & cuFFT library]

m Can handle effects arising due to weak compressibility.

m 3D Isosurface reconstruction is developed using Mayavi.

m Diagnostics viz. Energy spectra, Particle & Field Line tracer
(Cloud-In-Cell & Velocity Verlet scheme), Poincare Section
are developed. [In collaboration with Vinod Saini, IPR)]

v

m GPU code optimisation is achieved with OpenACC and CUDA
parallelisation. [With Naga Vydyanathan, NVIDIA, India]

m Multi-GPU parallalisation (for high resolution runs) with
NV-Link is in progress to run on NVIDIA-DGX station.[/n
collaboration with Naga Vydyanathan, NVIDIA, India]

RM, R Ganesh, V Saini, U Maurya, N Vydyanathan, B Sharma, Accepted in conf proceed of HiPC Workshop, 2018
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Motivation

nlinear Coherent Oscillation

m Within the premise of Single fluid MHD, energy can cascade
through both kinetic and magnetic channels simultaneously.
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Motivation

Nonlinear Coherent Oscillation

m Within the premise of Single fluid MHD, energy can cascade
through both kinetic and magnetic channels simultaneously.

m With weak resistivity, MHD model predicts -
1). irreversible conversion of magnetic energy into fluid kinetic
energy (i.e. reconnection).
2). conversion of kinetic energy into mean large scale
magnetic field (i.e. dynamo).
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Motivation

m Within the premise of Single fluid MHD, energy can cascade
through both kinetic and magnetic channels simultaneously.

m With weak resistivity, MHD model predicts -
1). irreversible conversion of magnetic energy into fluid kinetic
energy (i.e. reconnection).
2). conversion of kinetic energy into mean large scale
magnetic field (i.e. dynamo).

m Question: For a given fluid type and magnetic field strength,
are there fluid flow profiles which do neither?
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Motivation

Nonlinear Coherent Oscillation

m Within the premise of Single fluid MHD, energy can cascade
through both kinetic and magnetic channels simultaneously.

m With weak resistivity, MHD model predicts -
1). irreversible conversion of magnetic energy into fluid kinetic
energy (i.e. reconnection).
2). conversion of kinetic energy into mean large scale
magnetic field (i.e. dynamo).

m Question: For a given fluid type and magnetic field strength,
are there fluid flow profiles which do neither?

m Answer: Yes. For a wide range of initial flow speeds or Alfven
Mach number it is shown that the coherent nonlinear
oscillation persist.
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two spatial dimensions at Alfven resonance (Cs = V).

Cat's Eye Flow

uy = —Asin(koy) uy = ~+sin(kox) cos(koy) — Acos(kox) sin(koy)
uy, = +Asin(kox) u, = — cos(kox)sin(koy) + Asin(kox) cos(koy)

g Energy — Kinetic Energy
0.06 |- Magmetic Energy —— ~
Tqtal Enefg\ ——

it Kintc, Magnaticand ToalEnergy
Shifed Kinetic, Magnetic and Total Energy
o

°
o
o

6
Time Time

Rupak Mukherjee

Nonlinear Coherent Oscillation, Recurrence and



Motivation G-MHD3D Nonlin Coherent Oscillation Recurrence Dynamo in 3D MHD Summary E

Nonlinear coherent oscillation in two spatial dimensions at Alfven resonance (Cs = V).

Cat's Eye Flow

uy = —Asin(koy) uy = ~+sin(kox) cos(koy) — Acos(kox) sin(koy)
uy, = +Asin(kox) = — cos(kox) sin(koy) + Asin(kox) cos(koy)
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In three spatial dimensions

Nonlinear Coherent Oscillation at Alfven Resonance

(Sound speed = Alfven speed) in 3D

Kinetic & magnetic energy for Roberts & TG flows.

Kinec Energy —
Magneit Eneray PY]

N

~

Roberts flow: -

ux(0) = Up sin(kz)

uy(0) = Uy sin(kx)

uz(0) = Up sin(ky)

Taylor-Green (TG) flow:

ux(0) = A Up [cos(kx) sin(ky) cos(kz)]

nergy

Shifted

uy(0) = —A U [sin(kx) cos(ky) cos(kz)]

u,(0) =0
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In three spatial dimensions

Nonlinear Coherent Oscillation at Alfven Resonance

(Sound speed = Alfven speed) in 3D

Kinetic & magnetic energy for Roberts & TG flows.

Kinec Energy —
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Roberts flow:

ux(0) = Up sin(kz) g \/ \/

uy(0) = Uy sin(kx) -

uz(0) = Up sin(ky)

Taylor-Green (TG) flow:

ux(0) = A Up [cos(kx) sin(ky) cos(kz)]

nergy

Shifted

uy(0) = —A U [sin(kx) cos(ky) cos(kz)]

u,(0) =0
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Observations

2D Orszag-Tang Flow with
External Forcing
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Observations

2D Orszag-Tang Flow with 3D ABC Flow with different M4

External Forcing ux = Up[Asin(koz) + C cos(koy)]

uy = Up[B sin(kox) + Acos(koz)]
uz = Up[Csin(kgy) + B cos(kox)]
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Observations

2D Orszag-Tang Flow with 3D ABC Flow with different M4

| x = Up[Asin(koz) + C cos(k
Sxternal forcing s = ol stion - Acliory
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m With external forcing similar to initial flow the plasma acts as
a forced-relaxed system both in two and three dimensions.
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Galerkin / Finite mode representation in two spatial dimensions

Galerkin representation of the field variables (stream function 1); vector potential A)

V(x,y) = thosin kx + €™ (1 + 1h3 cos kx) + e~ (1} + 13 cos kx)
A(x,y) = Agsin kx + e (Ay + Az cos kx) + e~ (A% + Aj cos kx)
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Galerkin / Finite mode representation in two spatial dimensions

Galerkin representation of the field variables (stream function 1); vector potential A)

V(x,y) = thosin kx + €™ (1 + 1h3 cos kx) + e~ (1} + 13 cos kx)
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Key results of Nonlin: oherent Oscillation

Summary of Nonlinear Coherent Oscillation

m For decaying flows at Alfven resonance (Cs = V), an initial
uniform magnetic field profile leads to nonlinear coherent
oscillation between kinetic and magnetic modes.

m For externally driven flows, the nearly ideal
magnetohydrodynamic plasma acts as a forced-relaxed system.

m The oscillation can be captured through a finite mode
expansion of the MHD equations indicating the energy
content is primarily in the large scales of the system.

m As the Alfven Mach number is increased further, a tendency
to mean field dynamo is seen.
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Introduction to Recurrence

RECURRENCE in 3D MHD

m Reconstruction of initial condition in statistically large degrees
of freedom systems - counterintuitive to laws of
thermodynamics and entropy - trapping in phase space.

m Recurrence was first observed in 1D FPU system.

m In 2D hydrodynamic systems, reconstruction of initial flow
field was numerically observed by Yen & Ferguson and
explained by A Thyagaraja.

m However, generalising the analytical argument of recurrence in
higher dimensional systems is quite challenging.

m We observe recurrence in single fluid 3D MHD system.

m We numerically extrapolate the previous analytical argument
and find reasonable agreement with our DNS data.
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Recurrence

Recurrence - TG (v') flow

Kinetic Isosurfaces
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No Recurrence - ABC (X) flow

Kinetic Isosurfaces

Rupak Mukherjee IPR, India

Nonlinear Coherent Oscillation, Recurrence and Dynamo in 3D MHD



Recurrence
[ ]

TG Flow & Roberts Flow

Recurrence for TG & Roberts flow
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ABC Flow & Cats Eye flow

No recurrence for ABC & Cats eye flow
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WHY DOES IT RECUR?

Rayle

e Rayleigh quotient [Q(t)] measures the number of effective
'aCtive degl’ees Of freedom,. [Thyagaraja, Phys. Fluids, 22 (11), 2093; Thyagaraja, Phys.

Fluids, 24 (11), 1973]

5 = \2 = 5)\2
j{( Xu) +%(V><B) }dv > K2 ex |2
v k = =3 8 o .
. Q(t) = — = where, i & B are expanded in a Fourier series.
(® [ (1712+ % 182)av > Je |2
k
v
3 T T T T
ABC Flow ——
TG Flow —

0 I . I "
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WHY DOES IT RECUR?

Rayleigh
e Rayleigh quotient [Q(t)] measures the number of effective
‘active degrees Of freedom’. [Thyagaraja, Phys. Fluids, 22 (11), 2093; Thyagaraja, Phys.

Fluids, 24 (11), 1973]
j'[(ﬁxﬁ)%r%(ﬁxé)ﬂdv %kz\ckﬁ

_ Vv _ = B q . .
° Q(t) = ,f(\5|2+%\§\2)dv = Ek: \ck\2 where, i & B are expanded in a Fourier series.
v
m If Q(t) is bounded = s e
Recurrence can happen. 25l TG Flow —
m For TG & Roberts flow, ol

Q(t) is bounded.

m For ABC & Cats eye
flow Q(t) increases

without bound. e~~~ — ]

80 100

RM, R Ganesh, Abhijit Sen, 0 20 a0_ %0
Time (1)

arXiv:1811.00754
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Summary of Recurrence

Summary of Recurrence

m Ideally very low probability of trapping in phase space in high
dimensional systems (e.g. 3D MHD systems).

m Recurrence is observed for flows involving few number of
active degrees of freedom. [Birkhoff, Dynamical Systems,
1927, Chapter 7]

m Generating the flows in experimental systems is achievable -
hence can be tested in laboratory experiments.

m Recurrence can be helpful to make short time forecasts once
typical initial profiles are experimentally obtained.

m Dissipative regularisation of 3D MHD discards Hamiltonian
description leading to weak deviation from initial profiles.

m Conservative regularisation of 3D MHD [Thyagaraja, Phys
Plasmas 17, 032503 (2010)] may offer better recurrence.

Rupak Mukherjee IPR, India
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Introduction to Driven “sel ent” Dynamos

Introduction to Driven “self consistent” Dynamos

m Dynamo = Growth of magnetic energy at the cost of kinetic
energy. [Mean field, Stretch-Twist-Fold (short scale) etc.]
[Parker, ApJ, 122, 293 (1955), Cowling, MNRAS, 94, 39,
(1933), Hotta, Science, 351, 6280 (2016)]

m Work is in progress = Preliminary “fast” dynamo results.

m Results from 643 resolution runs. Higher resolution runs will
be performed in multi-GPU code.

m It was shown by Alexakis, ABC field provides fastest kinematic
dynamos [Phys Rev E, 84, 026321 (2011)].

m We have tried to find optimised parameter set to obtain fast
STF dynamos using ABC field.
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back-rea n at Py, = 1 and high My,

ABC flow
m ‘Self-consistent’ dynamo saturates " .In.d'ependen.t.of
unlike kinematic dynamo. initial condition.
m Linear growth rate (y) increases with = Multistep growth ¢f
magnitude of forcing & kf. MEZNEEE ENa )

A = 0.1; Kinetic Energy — 0.0001
A = 0.1; Magnetic Energy
A = 0.2; Kinetic Energy —

Magnetic —

1e05 Kinetic

A = 0.2; Magnetic Energy - 1e-06 ; Magnetic —
A = 0.3; Kinetic Energy — 1607 k¢ = 16; Kinetic
A = 0.3; Magnetic Energy k¢ = 16; Magnetic
40 60 80 100 B 10 20 30 40 50
Time Time

FIgU F€. Saturation of self-consistent Dynamo action for different magnitude & wave-number of external forcing

with parameters N = 643 [ = 273, §t = 1074, pg = 1, Up = 0.1, My = 1000, Ms = 0.1, Re = Rm = 450,
A=B=C=0.1,0.2,0.3 and kf = 1,2, 4,8, 16 using MHD3D.
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8 0C 8 8 8 ° o
Preliminary results on self-consistent externally driven STF dynamo from GMHD3D

Kinetic and Magnetic Energy Spectra indicating STF dynamo

e Shell averaged kinetic energy spectra saturates with slope —5/3.
e Shell averaged magnetic energy spectra saturates with slope 0.7.

100 1
1 g
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RM, R Ganesh, Abhijit Sen, Under preparation
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0C 8 of }
Preliminary results on self-consistent externally driven STF dynamo from GMHD3D

Kinetic and Magnetic Energy Spectra indicating STF dynamo

e Shell averaged kinetic energy spectra saturates with slope —5/3.
e Shell averaged magnetic energy spectra saturates with slope 0.7.
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19718‘ 0 1e-25

k
RM, R Ganesh, Abhijit Sen, Under preparation

m Preliminary energy spectra shows large and intermediate
scales in magnetic variables are energetically dominant.

m High resolution runs are needed to explore short scales.
= Need for Multi-GPU G-MHD3D code.
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Summary & Discussions

m Coherent nonlinear oscillation between fluid and magnetic
energies is numerically observed withing the framework of
single fluid MagnetoHydroDynamics.

m Reconstruction of initial flow data is found to occur for 3D
MHD system of equations. = Recurrence

m Fast dynamos are observed with chaotic flow lines at Prandtl
number unity.

Rupak Mukherjee IPR, India

Nonlinear Coherent Oscillation, Recurrence and Dynamo in 3D MHD



ent Oscillation Recur| e Dynamo in 3D MHD Summary
[ ]

Summary & Discussions

m Coherent nonlinear oscillation between fluid and magnetic
energies is numerically observed withing the framework of
single fluid MagnetoHydroDynamics.

m Reconstruction of initial flow data is found to occur for 3D
MHD system of equations. = Recurrence

m Fast dynamos are observed with chaotic flow lines at Prandtl
number unity.

v
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Summary & Discussions

m Coherent nonlinear oscillation between fluid and magnetic
energies is numerically observed withing the framework of
single fluid MagnetoHydroDynamics.

m Reconstruction of initial flow data is found to occur for 3D
MHD system of equations. = Recurrence

m Fast dynamos are observed with chaotic flow lines at Prandtl
number unity.
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m A steady state for near ideal plasma was derived by L. Woltjer
in 1954 by extremising the free energy constructed out of
magnetic helicity (H,, = fﬁ §dV) and magnetic energy

(Em = [ B2dV and B - /i = 0).

] Th|s > particularly yielded VxB= a(x)B subject to
B-Va =0 on the “walls". a = a(x) represents the rigidity of
large number of volume (Hm = [, A- BdV).

m J. B. Taylor considered a particular limit where, a weak
dissipation would break all the local helicity constants except
the one considered over the vessel with conducting surfaces,
resulting in a(x) = ap = constant and thereby, V x B = agB.

m Thus it was known that large scales do not participate in the
plasma relaxation until H. Qin et a/ [PRL, 109, 235001
(2012)] who has given arbitrary scale relaxation model.
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5 0C o] To)
Taylor-Woltjer / Qin

Preliminary Numerical Experiment: Taylor - Woltjer / Qin

m We numerically evolve a three dimensional MHD plasma from
a Beltrami class of solution in a region bounded by conducting
walls (B - Ai=0=i-A) and “suddenly” allow to expand the
plasma and fill the new volume.

m The expansion mediates via reconnection of magnetic field
lines thereby flow of kin and mag energy between scales.

m We measure the scales involved during this relaxation of the
plasma and from our numerical tools attempt to identify a
model of plasma relaxation.

References

= Taylor, PRL, 33, 1139 (1974), Woltjer, PNAS, 44, 489 (1958)
= H Qin et al, PRL, 109, 235001 (2012)
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Taylor-Woltjer / Qin
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Preliminary Results

The parameters chosen are such that magnetic helicity (Hp,)
remains constant while Hg decays allowing a Taylor-like
situation.

For wavenumber k = 1, for all values of the parameters
studies, power in magnetic energy spectra is seen to increase
while the power in kinetic energy spectra decreases with time.

For k = 4,8, the behavior is opposite for B spectra.

[ As plasma expands from time t = 0 with k =1 from a small
volume to fill up the simulation volume, in general while the
whole spectra is seen to contribute, mode numbers k ~ 10 are
seen to participate in the relaxation process more dominantly.

B For k = 4,8, the relaxation process is dominantly controlled
by k>10 modes.
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Derivation of single Fluid MHD Equation

Lo 1. L
VXE:—EVX(JXB)A—Vx(nf)
1= - n = .
=—= ix B)+ — B
CVx(ux )+47TV><(V>< )
__1s Z B URVZ: T . B
=—-Vx((WxB)+-—=V°B [-V-B=0]

c 47
Vx(ixB)=(B-V)i—(d-V)B+d(V-B)—B(V -
. d (P . .
Assumptions : P=~pKT = — | — | =0 identically

dt \ p7
n=0
Definition : My = ﬂ = M
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nchmark of MHD2D: Hydrodynamic (KH)

ition: Kelvin-Helmholtz flow

w0 =2; d=3pi/ 128 Initial Velocity

2
" wolcosh((epii2)d)*2 + /(cusm(lrp 12)id))"2 .

o\

Figure: Vorticity Velocity

e v =0.0001
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Benchmark of MHD2D: Hydrodynamic (KH)

KH Instability with Tracer Particles (C-I-C & VV scheme)
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Benchmark of MHD2D: Hydrodynamic (KH)

Benchmarking with Analytical result

Analytical Growth Rate for a Broken Jet

Drazin, P. (1961). Journal of Fluid Mechanics, 10: 571-583.

V3 - 2—2{<I§E)2+2\f3£2}§

Ud

v

Re =

d = Shearing Length
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Benchmark of MHD2D: Hydrodynamic (KH)

Evaluation of Growth rate of KH Instability

Numerical Growth Rate

/ . mwi R

I//\,\ m ,/ /\\m— | h e /A\ ———

o Ly=L,=2m wy=25 d= 7% v=00015
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wth Rate Comparison of KH wi
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Analytical and Numerical Growth Rate with Compressibility
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Figure: Analytical & M = 0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5
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Benchmark of MHD2D: Hydrodynamic (KH)

Benchmarking of MHD2D for compressible flows

wth Rate at Large Mac

fig2 Keppens
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Benchmark of MHD2D: MagnetoHydroDynamic (KH)

Benchmarking of compressible MHD flows
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Figure: Benchmarked with R Keppens et. al., JPP, 61 (1999)
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Benchmark of MHD2D: MagnetoHydroDynamic (KH)

Benchmarking of MHD2D for compressible flows

For compressible Vortex Merger Problem with AGSpect
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Numerical checks of MHD2D for KH flow in MHD system

Ideally Divergence B = 0
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GPU Performance of G-MHD3D (With Nagavijayalakshmi Vydyanathan, NVIDIA, India)
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GPU Performance of G-MHD with Passive Tracers (With Vinod Saini, IPR & Naga Vydyanathan, NVIDIA, India)

G-MHD3 performance over different architectures (logarithmic plot)
10000 G-MHD3D performance for large grids (logarithmic plot)

Grid dimensions Grd dimensions

Execution time per time.step in ms

B Intel Xeon £5.2698 v3@2.3GHz  WTesla K80 W Tesla P100 # Intel Xeon £5.2698 3€2.3GHz W Tesla P100

G-MHD3D & 3D Poisson solver
Performance — Hackathon - 2018

3D Poisson Solver: Total Local Commu
Number of GPUs Time FFT ?lca)tlon Performance of Multi-
ms;

(Resolution) (ms) (ms) R
GPU 3D Poisson solver

1 19.9 19.8 O . -
(512 X 512 X 512) using accFFT library.
= 25.4 9.84 14.0 GMHD3D has been
(512 X 512 X 512) "
openACC parallalised
a 14.6 501 8.59 . .
(512 X 512 X 512) using cuFFT library.
a 153 82.0 61.0 . .
GMHD3D: Run time of
(1024X1024X1024) Gridl Resolution GMHDC-’3D @in
gMdHRD3D:I . Run timec%f GMHD3D In-place FFT ?fg%grszions)
r esolution 1IN secon
Out-of-place FFT §1o iterations) 64 X 64 X 64 0.464
128 X 128 X 128 0.861
64 X 64 X 64 1.54 256 X 256 X 256 4.009
128 X 128 X 128 14.6 512 X 512 X 512 646.6
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